您要查找的是不是:
- Quadrate matrix inequality region 二次矩陣不等式區域
- The guaranteed cost controllers can be obtained by solving the linear matrix inequality, which makes the closed-loop systems quadratic stable for all admissible uncertainties, as well as guarantying the cost is bounded in a limitation. 通過(guò)求解相應的線(xiàn)性矩陣不等式就可得到魯棒保成本控制,所設計的保成本控制器對所有容許的不確定性不僅使得相應的閉環(huán)系統達到二次穩定,也能保證閉環(huán)成本函數不超過(guò)一個(gè)確定的界。
- These conditions are expressed via the linear matrix inequality(LMI). 基于線(xiàn)性矩陣不等式(LMI)處理方法,給出了分散控制器存在的充分條件。
- The sufficient condition equals to the solvability of a kind of linear matrix inequality (LMI). 此充分條件等價(jià)于一類(lèi)線(xiàn)性矩陣不等式(LMI)的可解性。
- Firstly, a new delay-dependent passivity condition in terms of linear matrix inequality is proved. 針對標稱(chēng)系統,利用線(xiàn)性矩陣不等式給出其時(shí)滯依賴(lài)無(wú)源性條件;
- Stabilization conditions in the form of linear matrix inequality(LMI) are established. 建立了可由線(xiàn)性矩陣不等式(LMI)表示的鎮定條件。
- Once this condition is feasible, a strict linear matrix inequality (LMI) design approach is developed with an explicit expression for decentralized state feedback controller. 當這組條件可解時(shí),給出了分散狀態(tài)反饋控制器的嚴格線(xiàn)性矩陣不等式設計方法和控制律的表達式。
- By using Lyapunov stable theory, the gain of the observer can be obtained by solving a line matrix inequality (LMI) in Matlab LMI toolbox. 應用Lyapunov穩定性理論,觀(guān)測器的增益借助于Matlab中的LMI工具箱求解線(xiàn)性矩陣不等式得到。
- By using a saturated feedback control structure, the control law is obtained by solving a linear matrix inequality (LMI) optimization problem on-line. 初始時(shí)刻優(yōu)化問(wèn)題的可行性保證了閉環(huán)控制系統的魯棒穩定性。
- The solvable condition of this optimization problem and further the solutions are derived by employing linear matrix inequality techniques. 應用線(xiàn)性矩陣不等式技術(shù),給出并證明了該解存在條件和求解方法。
- The proposed criterion is formulated in terms of a linear matrix inequality (LMI) with some model transformation techniques and decomposition method. 主要結果可估測延遲時(shí)間且為時(shí)延相關(guān)穩定準則。
- Then, the Lyapunov function and linear matrix inequality (LMI) methods are used to derive a sufficient condition for the asymptotical stability of the hybrid system. 然后采用李亞普諾夫函數、線(xiàn)性矩陣不等式的方法推導出了該混合系統漸近穩定的一個(gè)充分條件。
- Then, the Lyapunov function, linear matrix inequality (LMI) methods were used to derive a sufficient condition, which could ensure that the NCS was asymptotically stable. 然后采用李亞普諾夫函數、線(xiàn)性矩陣不等式的方法推導出了該網(wǎng)絡(luò )化控制系統漸近穩定的充分條件。
- The concept of parallel distributed compensation (PDC) and linear matrix inequality (LMI) are employed to design an output feedback controller for T-S fuzzy models. 然后采用平行分布補償法(PDC)和線(xiàn)性矩陣不等式方法(LMI),研究了該類(lèi)輸出反饋控制器的解析設計方法。
- For the external disturbances and the approximation errors, a linear matrix inequality (LMI) problem is then solved to guarantee the robustness of the closed-loop. 對于系統不確定外界干擾和模糊系統的逼近誤差,通過(guò)求解一個(gè)線(xiàn)性矩陣不等式來(lái)保證閉環(huán)系統的魯棒穩定性。
- Based on the impulsive theory and linear matrix inequality technique, a sufficient condition for the impulsive synchronization of chaotic dynamical systems is derived. 利用脈沖控制理論和線(xiàn)性矩陣不等式的方法,得到了關(guān)于混沌系統脈沖同步的一個(gè)充分條件。
- The Lyapunov function,linear matrix inequality(LMI) methods are used to derive a sufficient condition,which can guarantee that the NCS is asymptotically stable. 采用李亞普諾夫函數、線(xiàn)性矩陣不等式的方法推導出一類(lèi)網(wǎng)絡(luò )化控制系統漸近穩定的充分條件。
- Then, by Lyapunov function and linear matrix inequality (LMI), the sufficient conditions are given to make the singular networked control system exponentially stable. 利用李雅普諾夫函數方法和線(xiàn)性矩陣不等式方法,給出了廣義網(wǎng)絡(luò )控制系統指數穩定的充分條件。
- Greatest common divisor quadratic matrix 最大公因數平方矩陣
- By using linear matrix inequality (LMI) approach,a good region is presented fo r the upper bound index of state variance which is consistent with the prespecif ied pole region. 利用線(xiàn)性矩陣不等式(LMI)方法,得到了與指定極點(diǎn)區域相容的狀態(tài)方差上界指標的較好取值范圍。