您要查找的是不是:
- One-to-one onto function is also called bijection. 一對一到上函數稱(chēng)為雙映射。
- It is bijective if both injective and sujective. 既單又滿(mǎn)的映射稱(chēng)為一一對應。
- Of course, we use annotations to enable bijection. 當然,我們使用注釋來(lái)完成雙向注射。
- An algebraic and a bijective proof is presented. 第一章介紹幾個(gè)重要的矩陣數值域基本特性。
- Reversible circuit realizes a bijective reversible logic function. 可逆電路實(shí)現的是一個(gè)雙射的可逆邏輯函數功能。
- Seam introduces the notion of bijection as a generalization of injection. 從客戶(hù)角度出發(fā),一個(gè)特定的無(wú)狀態(tài)的組件的所有實(shí)例都可以互換。
- In essence, bijection lets you alias a context variable to a component instance variable, by specifying that the value of the instance variable is injected, outjected, or both. 本質(zhì)上說(shuō),雙向注射能夠讓你通過(guò)指定實(shí)例變量的值是注入,還是注出或者兩者都是,從而將一個(gè)上下文變量別名為一個(gè)組件的實(shí)例變量。
- First we give a direct bijection on two sets involved in the theoremof Gollnitz, and extend the bijection to a generalized form given by Alladi, Andrews, andGordon [4]. 首先我們給出Gollnitz定理中的兩個(gè)分拆集合之間的一個(gè)一一對應。 然后將其推廣到Alladi、Andrews及Gordon[4]的一般形式上。
- The graph isomorphism is to find a bijection between the vertexes of two graphs that preserve the edges.This problem has been paid much attention by many researchers. 圖同構問(wèn)題是指對兩個(gè)圖尋找頂點(diǎn)之間的一個(gè)一一映射,使得兩圖的邊在該映射下也保持對應關(guān)系,該問(wèn)題得到許多研究者的關(guān)注。
- Without influence on the final results, the searching area is "reduced" based on the definition and properties of bijection, so that global searching is accelerated. 根據雙射的定義和性質(zhì),在不影響最終尋優(yōu)結果的情況下對問(wèn)題的搜索域進(jìn)行“縮小”,從而加速了全局搜索。
- A bijection between the C* - seminorms and balanced subsets of positive linear functionals over a * - algebra is established. Some applications are given in this direction. 建立了*-代數上-半范數和正定線(xiàn)性算子的平衡子集之間的一一對應關(guān)系;并給出了它的一些應用.
- This axiom implies the axiom of global choice because the class of ordinals is not a set;hence there exists a bijection between the ordinals and the universe. 如果需要的話(huà),它可以被弱化為“任何其定義域被包含在一個(gè)集合中的類(lèi)函數的值域等于一個(gè)集合”;
- In digital geometry processing, many applications such as morphing, deformation and texture transfer etc. require a bijective mapping between two or among more models. 大部分幾何處理的應用,都需要兩個(gè)或是多個(gè)模型的一對一對應關(guān)系。這些對應關(guān)系建立出來(lái)后,必需要能夠表現出原模型的特徵及形狀。
- We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. 我們主要關(guān)心的是對射的證明,也就是透過(guò)在兩個(gè)集合間建立一個(gè)對射(一對一且映成的函數)來(lái)證明它們的元素個(gè)數相等。
- Proposition 2.8 Let H be a Hopf algebra and U a subHopfalgebra of H0 such that both H and U have bijective antipodes, and assume that U satisfies the RL-condition with respect to H. Let A be a U-comodule algebra, so that A is an H-module algebra as above. 命題2.;8 H是一個(gè)Hopf代數,U是H~0的一個(gè)子Hopf代數使得H和U有雙射的對極,假定U關(guān)于H滿(mǎn)足RL-條件。 如上所述,A是一個(gè)U-余模代數,使得A是一個(gè)H-模代數。
- bijective measure-preserving transformation 保測雙射變換
- Some Bijective Mapping In the Eguipotent Problem of Sets 集合對等問(wèn)題中的反射
- An Algorithm to Improve the Nonlinearity of Bijective S-boxes 一種改善雙射S盒非線(xiàn)性度的方法
- An Effective Algorithm for Improving Cryptographic Properties of Bijective S-Boxes 一種改善雙射S盒密碼特性的有效算法
- {\it (iii)}, we construct a bijection between ${\cal K}$ and $\Z$ using the preorder-traversal algorithm. 實(shí)驗結果表明:多樣化問(wèn)題情境教學(xué)對初一學(xué)生數學(xué)學(xué)習態(tài)度有積極的影響。