您要查找的是不是:
- Then we concentrate on the construction of the discrete space of Lagrange multiplier, the space of mortar elements, and the conjugated gradient method for the related saddle point problem. 接著(zhù)重點(diǎn)討論了Lagrange乘子的近似空間 ,即粘接元 (mortarelements)空間的建立 ,以及所引起的離散鞍點(diǎn)問(wèn)題的共軛梯度迭代解法。
- This is a saddle point, I seek the use of C language procedures. 這是一個(gè)由本人求鞍點(diǎn)的用C語(yǔ)言編寫(xiě)的程序。
- A stationary point which is neither a local maximum nor a local minimum point is called a saddle point. 一個(gè)既不是局部極大點(diǎn)又不是局部極小點(diǎn)的平穩點(diǎn)稱(chēng)為一個(gè)鞍點(diǎn)。
- The rate of a process is based upon the energy barrier required to cross the corresponding saddle point, and a harmonic prefactor. 越過(guò)馬鞍點(diǎn)和前因子所需的能量決定該過(guò)程的速度。
- An equavilent proposition of saddle point and a saddle point theorem in the sense of strict efficiency are given. 首先,給出集值優(yōu)化問(wèn)題在嚴有研究嚴有效意義下鞍點(diǎn)的一個(gè)等價(jià)命題和鞍點(diǎn)定理。
- Given data( not graphics), the Six Sigma Black Belt will be able to determine if the stationary point is a maximum, minimum or saddle point. 給定數據(是圖形)6西格瑪黑帶應能確定駐點(diǎn)是最大值、小是還是馬鞍點(diǎn)。
- It is found that when the control signal is added the original saddle point embedded in the spatiotemporal chaos is changed to an unstable focus. 研究發(fā)現,控制前時(shí)空混沌態(tài)中嵌入的鞍點(diǎn),在施加控制信號后表現出不穩定焦點(diǎn)的行為。
- This paper studies the saddle point and duality theory of set-valued optimization problems in the sense of strict efficiency. 摘要本文研究集值優(yōu)化問(wèn)題在嚴有效意義下的鞍點(diǎn)理論及對偶理論。
- Given data (not graphics), The Six Sigma Black Belt will be able to determine if the stationary point is a maximum, minimum or saddle point. 譯文:給定數據(不是圖形),六西格瑪黑帶應該能夠確定駐點(diǎn)是最大值、最小值還是承受點(diǎn)。
- These saddle points represent points of stagnation of the current flow. 這些鞍點(diǎn)代表電流的駐點(diǎn)。
- We have developed a method for doing this, using the dimer method for saddle point finding combined with the kinetic Monte Carlo to advance the system over barriers. 我們設計了一種尋找馬鞍點(diǎn)二聚物法與蒙特卡羅法相結合的方法。
- LAGRANGE MULTIPLIER THEOREM OF EFFICIENT SOLUTION AND SADDLE POINT THEORY 有效解的Lagrange乘子定理與鞍點(diǎn)理論
- We change the impact systems into a nonsmooth dynamical systems, we obtain criticalpoints using nonsmooth saddle point theorem which corresponding to our subharmonic solu-tions. 通過(guò)轉化,我們將碰撞系統轉化為一個(gè)非光滑動(dòng)力系統,利用非光滑鞍點(diǎn)定理得到了一系列臨界點(diǎn),并證明此時(shí)我們所得的臨界點(diǎn)就對應著(zhù)原始模型的碰撞周期解。
- And then,Vector Fritz John saddle point and Vector Kuhn Tucker saddle point are defined in this space,the relations between them,and between the weak efficient solution of vector extremum problems and them are dicussed. 然后 ;在這種空間中定義向量 Fritz-John鞍點(diǎn)和向量 Kuhn- Tucker鞍點(diǎn) ;我們討論了其二者之間以及向量極值問(wèn)題的弱有效解與他們的關(guān)系 .
- Lagrange Multiplier and Saddle Point Theorems of Vector Extreme Value Problem with Set-Set Maps 集-集映射向量極值問(wèn)題的Lagrange乘子和鞍點(diǎn)定理
- Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go beyond the discussion in the next. 注意:如果你愿你的班級除了鞍點(diǎn)以外為任何事描繪略圖軌道,你將會(huì )需要在下一個(gè)中超越討論。
- The optimality conditions of saddle points, weakly duality theorem, strong duality theorem and converse duality theorem are obtained under convexity assumptions. 其次,在某種凸性假設下,研究嚴有效意義下鞍點(diǎn)最優(yōu)性條件、弱對偶性、強對偶性、逆對偶性。
- Incomplete Lagrange function and saddle point optimality criteria for a class of nondifferentiable generalized fractional programming 一類(lèi)非可微廣義分式規劃的非完全Lagrange函數與鞍點(diǎn)最優(yōu)性準則
- ITERATIVE METHOD ON SADDLE POINT PROBLEMS 解穩定化的鞍點(diǎn)問(wèn)題的迭代法
- About Saddle Point Theorem and Its Corollary 關(guān)于鞍點(diǎn)定理及其推論