您要查找的是不是:
- Energy Level analysisUsing the Taylor series expansion method, the energy Levels of Nd and Er chelates were analyzed. 利用泰勒展開(kāi)法,對Nd和Er配合物能級進(jìn)行了分析。
- Based on the Taylor series expansion,the formulas is obtained by the character of the Vandermonde determinant. 此公式是以泰勒展開(kāi)式為基礎利用范德蒙行列式性質(zhì)而得到的。
- Analytic solutions of post-Newton metric component were got by series expansion in oblate ellipsoid coordinate system. 對由后牛頓效應產(chǎn)生的度規分量利用橢球坐標系及級數展開(kāi)求得解析解。
- Different score-spaces have their own physical meanings inspired by Taylor series expansion. 并從泰勒級數展開(kāi)式的角度論述了各類(lèi)品質(zhì)向量的物理意義的不同,最后通過(guò)實(shí)驗驗證了擴展品質(zhì)空間有利于分類(lèi)性能的改善。
- The predictive model is acquired by truncating appropriately the Taylor series expansion for system state. 其預測模型通過(guò)對系統狀態(tài)泰勒級數展開(kāi)并做適當的截尾處理獲得。
- Kong Kim algorithm and the algorithm of iterative least square fitting based on the first order Taylor series expansion are good ones. 其中 Kong- Kim算法和基于一階泰勒級數展開(kāi)式的迭代最小二乘算法是兩種非常優(yōu)秀的算法 .
- A Taylor series expansion of the transfer function yields the number of paths of a given length between the source and the destination. 傳輸方程的泰勒級數展開(kāi)可顯示信源和終點(diǎn)間所存在的給定長(cháng)度的路徑數。
- Based on the basic elastic equations and series expansion, the paper presents the general solution of antiplane interface end. 利用位移函數的級數展開(kāi),對任意角度的反平面問(wèn)題界面端的應力場(chǎng)進(jìn)行了分析研究,得到了全場(chǎng)解。
- Vectorial eigenmodes supported by the buried rectangular and rib optical waveguides are obtained using variable transformed series expansion method. 基于變量變換級數展開(kāi)法,獲得了掩埋矩形光波導及脊形光波導的矢量本征模及其傳播常數。
- The first order Taylor series expansion replaces the non-linear equation used in solving this plane, and thus simplifies the algorithm. 通過(guò)求解由一階泰勒展開(kāi)式得到的線(xiàn)性方程組,避免了為求解此平面而求解非線(xiàn)性方程組最小二乘解的過(guò)程,使算法簡(jiǎn)化。
- The bivariable Taylor series expansion of series structural systems reliability is presented and numerical method deal with infinite integnal in the expansion is developed. 本文給出串聯(lián)結構體系可靠度的二元泰勒級數展開(kāi)表達式,并給出有關(guān)一維無(wú)窮積分的數值解法。
- On analyzing the mathematical law followed by low-frequency oscillation,a recursive equation is put forward and then simplified with Taylor series expansion. 該算法運用了非線(xiàn)性回歸法,首先分析了低頻振蕩波形遵循的數學(xué)規律,提出合適的回歸方程,并通過(guò)泰勒展開(kāi)法,將該回歸方程進(jìn)行簡(jiǎn)化,再等間隔抽取N個(gè)采集點(diǎn)進(jìn)行回歸計算,求出回歸方程系數,減少了運算量;
- Taylor series expansion techniques are used to trace both the fault-on trajectory and the accelerating power of the post-fault system along the fault-on trajectory. 在PEBS法臨界切除能量的求取過(guò)程中,用高階Taylor級數展開(kāi)模擬持續故障軌跡和進(jìn)行加速功率的求取。
- This paper presents a new division algorithm based on the Taylor series expansion,which requires two multiplication operations and a single small lookup table. 介紹了一種新的除法算法,該算法是利用Taylor展開(kāi)公式的近似,采用兩次乘法操作和一張較小的查找表。
- Then we analyze hyperbolic equations solving algorithms and deduceassociated algorithm of Taylor series expansion and Least-Lquares estimation,stimulate the algorithm. 然后分析了雙曲線(xiàn)定位方程的求解算法,推導了泰勒級數展開(kāi)結合最小二乘估計聯(lián)合求解算法,并對算法性能進(jìn)行了仿真;
- Based on the theory of modal superposition and power series expansion, a modal superposition method for the sensitivity analysis of FRF is proposed in this paper. 基于模態(tài)展開(kāi)和冪級數展開(kāi)原理,提出了一種頻響函數靈敏度分析的模態(tài)展開(kāi)法。
- A general solution and the stress intensity factor are obtained in term of series expansion, which satisfies both Laplace equation and the permeable boundary condition. 得到了用級數表示的滿(mǎn)足控制拉普拉斯方程和可導通邊界條件的基本解及應力強度因子。
- By using the Fourier series expansion, approximate analytical propagation equations of laser beams through a paraxial optical ABCD system with different apertures are derived. 用傅立葉級數展開(kāi)法研究光束通過(guò)有光闌限制的近軸ABCD光學(xué)系統的傳輸特性,導出了光闌透射率函數不同時(shí)的傳輸公式。
- A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier Bessel series expansion method. 采用波函數展開(kāi)法,給出了平面P波入射下半空間中洞室群對地面運動(dòng)影響問(wèn)題的一個(gè)級數解答。
- The nonlinear partial differential equations are transformedinto ordinary differential equations by series expansion and solved numerically byfourth-order Runge-Kutta method. 用極數展開(kāi)把非線(xiàn)性偏微分方程組化為二階常微分方程,并由四階R1mge-Kuua法數值求解。