您要查找的是不是:
- Bernoulli數與Stirling數On Bernoulli Numbers and Stirling Numbers
- Stirling數與Lah數之間的相關(guān)性THE RELATED PROPERTIES BETWEEN STIRLING NUMBER AND LAH NUMBER
- Euler數與Bernoulli數的一些恒等式SOME IDENTITIES OF EULER NUMBERS AND BERNOULLI NUMBERS
- 一類(lèi)包括Euler數與Bernoulli數的恒等式A Kind of Identities Containing Euler Numbers and Bernoulli Numbers
- Stirling數Stirling number
- 太陽(yáng)能熱動(dòng)力系統Brayton裝置與Stirling裝置分析與比較The Comparison and Analysis of Solar Dynamic Power Module with Brayton Cycle and Stirling Cycle
- 廣義Stirling數generalized Stirling numbers
- 涉及Euler數、Bernoulli數和推廣的第一類(lèi)Stirling數的一些恒等式SOME IDENTITIES INVOLVING EULER NUMBERS, BERNOULLI NUMBERS AND GENERALIZED STIRLING NUMBERS OF THE FIRST KIND
- 第2類(lèi)Stirling數stifling number of the second kind
- 關(guān)于Fibonacci數與Bernoulli數的一個(gè)恒等式An Identical Equation Between Fibonacci Numbers and Bernoulli Numbers
- 李善蘭對Stirling數和Euler數的研究The Study of the Stirling Numbers & the Eulerian Numbers by Li Jenshoo
- 第2類(lèi)Stirling數Bernoulli數與Euler數的解析表示式Analytic Representative of Two Class Stirling Number and Bernoulli Number and Euler Number
- 關(guān)于第一類(lèi)Stirling數的一般表達式及其幾個(gè)性質(zhì)On The General Expression and some Properties of Stirling Numbers of The First Kind
- Bernoulli數Bernoulli number
- 高階Bernoulli數higher order Bernoulli numbers
- 壓縮前一個(gè)信息組中的總比特數與壓縮后該組中的總比特數之比。The ratio of the total number of bits in a block before compression to the total number of bits in the same block after compression.
- 早期對一些計數函數的研究是引入組合學(xué)研究方法的重要內容,如Fibonacci數、Catalan數和Stirling數等經(jīng)典計數函數;Discuss earlier researches on such counting functions, as Fibonacci numbers, Catalan numbers and Stirling numbers.
- 關(guān)于Bernoulli數的同余性質(zhì)On the Congruence Properties of Bernoulli Numbers
- 為傳遞通道生成的通知數與傳遞通道所發(fā)送的消息數的比率。Ratio of notifications generated for the delivery channel to messages sent by the delivery channel.
- 給出了Fa dibruno公式在函數逐次求導上的應用定理并給出了證明 ,同時(shí)應用此定理給出了一些抽象復合函數的逐次導數 ,并利用Stirling數對結果進(jìn)行簡(jiǎn)化。This paper presents and proves the theorem about application of the Fa? bruno formula in calculating successive derivatives of some functions. At the same time, it puts forward successive derivatives of some abstract compound functions and simplifies the result by making use of Stirling Number.