您要查找的是不是:
- 無(wú)扭仿型Kac-Moody代數untwisted affine Kac-Moody algebra
- k=3扭仿型Kac-Moody代數的表示及生成關(guān)系THE REPRESENTATION AND THE GENERATOR AND DEFINING RELATION OF TWISTED AFFINE KAC-MOODY ALGEBRA WHEN K=3
- 非扭仿射Kac-Moody代數中Borel子代數的擴代數Overalgebras of Borel subalgebras in Kac-Moody algebras
- 仿射Kac-Moody代數affine Kac-Moody algebra
- 無(wú)扭軋機twist-free mill
- 廣義Kac-Moody代數與無(wú)限維完備Lie代數GENERALIZED KAC-MOODY ALGEBRAS AND INFINITE DIMENSIONAL COMPLETE LIE ALGEBRAS
- 無(wú)扭精軋機no-twist finishing mill
- 戶(hù)型house type
- 優(yōu)質(zhì)高速無(wú)扭線(xiàn)材Top quality high speed untwist wire
- 筆型pen type
- 扭to turn
- WZW模型新的Kac-Moody與Virasoro對稱(chēng)性New Kac-Moody and Virasoro Symmetries of WZW Model
- 整型integer
- 全無(wú)nil
- 運動(dòng)型motile
- 扭矩torquemoment
- 無(wú)紡nonwoven
- 第二部分:我們利用(A)-模引進(jìn)所謂典范的Kac-Moody代數的定義,證明了Serre關(guān)系式是任意一個(gè)典范Kac-Moody代數g(A)的生成元定義關(guān)系(定理2.2)。In Part II , we introduce the definition of so called standard Kac-Moody algebra by using g(A)-module, and prove that Serre relationis the defining relation of any standard Kac-Moody algebrag(A) .
- 表型phenotype
- 無(wú)界unbounded