您要查找的是不是:
- This result is often called the integrality theorem. 此結果常稱(chēng)為整性定理。
- This result is often called the integrality theorem 此結果常稱(chēng)為整性定理。
- The cauchy integral formula and cauchy integral theorem are discussed in this paper. 本文主要討論雙解析函數的 Cauchy積分公式 ,Cauchy積分定理等問(wèn)題。
- We present a new proof of Cauchy integral theorem by using harmonic analysismethod, which is simpler than Goursat's proof. 我們利用調和分析的方法給出了柯西積分定理的一個(gè)新的證明;我們的證明比古莎所給出的證明簡(jiǎn)單.
- Integral Theorem of New There Types Abel-equations 新的三類(lèi)Abel型微分方程的求積定理
- An Application of Jordan's Integral Theorem 積分定理的一個(gè)應用
- A New Proof of Cauchy Integral Theorem 柯西積分定理的一個(gè)新證明
- Discussion of value about definite integral theorem 關(guān)于積分中值定理的教學(xué)探討
- value in definite integral theorem 積分中值定理
- The Application and Dissemination of an Integral Theorem 一個(gè)可積性定理的推廣與應用
- Let us restate the assertions above as a theorem. 我們把上述的斷言重新表述為一個(gè)定理。
- 2.Grip expertly Cauchy Integral Theorem and its applications; 2.熟練掌握柯西積分定理及其應用;
- 3.Cauchy Integral Theorem in a simply connected domain; 3.單連通區域內的柯西積分定理;
- Introduing the concept of lorentzian contact metric spaces, and studting the generic submanifolds, the author obtain several integrable theorems on the distribntions of the corresponding submanifolds. 摘要引進(jìn)洛倫茲切觸度量空間的概念,并研究其一般子流形,證明了關(guān)于洛倫茲切觸度量空間中一般子流形切叢上分布的幾個(gè)可積性定理。
- The second proof of Theorem 26 is due to James. 定理26的第二個(gè)證明屬于詹姆斯。
- Theorem g is called binomial theorem. 定理g稱(chēng)為二項式定理。
- This completes the proof of the convexity theorem. 這就完成了凸定理的證明。
- This calculation illustrates the theorem. 這個(gè)計算說(shuō)明了這樣一個(gè)定理。
- We call this principle a rule and not a theorem. 我們稱(chēng)這個(gè)法則為原理而不稱(chēng)為定理。
- We have thus arrived at the very important theorem. 這樣我們就得了一條很重要的法則。