您要查找的是不是:
- Where H is a subgroup of a topological group G. The Second is that we have proved that the annibilator A of H is an open subgroup of the dual group G when G is a locally compact abelian group and H is its compact group. 其次證明了當G是一個(gè)局部緊交換群且H是它的緊子群時(shí),H的零化子A是對偶群G的開(kāi)子群。
- Let G be a locally compact Abelian group. B be a Segal algebra without order onG. 設G是局部緊Abel群,B是G上的無(wú)Order棄次Banach代數,(?)
- The third is the identity of G and Z/(?) , where G is a compact abelian group A=G and Z is the additive group of integers with discrete topology. 最后一個(gè)結果表明G與Z/A可視為同一,而其中的G是一個(gè)緊交換群,=G,Z是帶有離散拓撲的整數加群。
- The weakly inner amenable groups or (IA) groups form a very important class of locally compact groups which contains amenable groups (including abelian groups and compact groups). 弱內自可靠群或[IA]群是一類(lèi)重要的局部緊致拓撲群,是包含可靠群(當然也包含交換群,緊致群)在內的一大類(lèi)拓外群。
- Another is equilibrium problems on local compact cone . 二是局部緊錐上的一類(lèi)平衡問(wèn)題;
- We prove that if G is also an abelian group, then the group is amenable. 當 G是交換群時(shí) ,給出一種證明其順從的方法
- ThePurpose of this note is to get a characteristic of finite Abelian group. 文章研究了具有某種性質(zhì)的自同構的有限群,得出了這種群為Abelian群的一個(gè)充要條件。
- Some conditions were discussed , under which a group become an abelian group . 討論在什么條件下 ;一個(gè)群可以成為交換群 .;首先討論一般的群;然后討論有限群
- The ellipse rotating symmetric group is proposed,which is an Abelian group. 提出橢圓旋轉對稱(chēng)群,它是一個(gè)單參數阿貝爾群。
- Unitary representation of locally compact group 局部緊群的酉表示
- locally compact topological group 局部緊拓撲群
- The concept of purifier of subgroup of Abelian group and some conclusions related to it are given in this paper. 本文給出了Abel群之子群的純化子概念及之相關(guān)的幾個(gè)結論。
- By 1991 there were 500 schools and 92,000 young people involved with their local compact. 至1991年,地方聯(lián)合辦學(xué)項目涉及到500所學(xué)校和92000名年輕人。
- In this paper we study Toeplitz operator and Toeplitz algebra on discrete abelian group. 研究了離散交換群上的Toeplitz算子和Toeplitz代數 .
- In this paper,we prove that -2,-3 are not multipliers of planar difference sets in Abelian group. 本文證明了 :- 2、- 3均不是平面差集 ( Abel群中 )的乘子 ,并指出這一結果可用于討論平面差集的存在性判定
- The present thesis essentially aims at generalizing one theorem about the complete group in the finite group theory up to the infinite abelian group. 本文中心,是將有限群論中關(guān)于完全群的一個(gè)定理推廣到無(wú)限Abel群。
- The main result is as follows: Let X be a regular space, then the nonempty closed subsets hyperspace is locally compact iff X can be represented as the sum of a compact space and a discrete space. 主要結果是:X正則,則其閉子集超空間局部緊當且僅當X可表示成一個(gè)緊空間與一個(gè)離散空間的拓撲和。
- The critical group of a connected graph is a finite abelian group whose structure is a subtle isomorphism invariant of the graph. 圖的臨界群是圖生成樹(shù)數目的一個(gè)加細.;它是定義在圖上的一個(gè)有限交換群;其群結構是圖的一個(gè)精細不變量;與圖的Laplacian理論密切相關(guān)
- On the multiplier of planar difference sets in Abelian group,it is well known that -1 is not multiplier and 2,3,5,are not extraneous multipliers. 在 Abel群中平面差集乘子的結果中 ;有平面差集的階 n的任何因數均是乘子 ;且 - 1不是乘子 ;從文獻 [1]可以得出 :2、3、5不是額外乘子 .
- In this paper, We have proved finite Abelian group G has 147 types when| A ( G ) | = 25pq, here p, q are different odd primes. 本文利用有限Abel群G的自同構群A(G)的階來(lái)確定群G的構造,證明了當|A(G)|=2~5pq時(shí),G最多有147種類(lèi)型。