您要查找的是不是:
- The best bessel function expanded value of C is get through simulation. 仿真計算出了貝塞爾函數展開(kāi)的最佳C值。
- The classic Bessel function is one of special functions. 經(jīng)典Bessel函數是特殊函數的一個(gè)重要內容。
- Remember that the evolution of each partial is determined by its corresponding Bessel function. 有時(shí),這種變化可能在短時(shí)間內出現或聲音本聲的整體持續可能非常短暫。
- The dark fringes in the photographs represent the roots of the first Bessel function of zero order. 在這些照片上,可以由條紋分布給出一類(lèi)零階貝塞爾函數的根值。
- The integral containing Bessel function was computed by use of the Filon method which has advantages as high accuracy and high speed. 含貝塞爾函數的數值積分是用FiLon方法完成的,它具有精度高,運算速度快的特點(diǎn)。
- In chapter 4,we present the main properties of the Bessel function,including addition theorem and multiplication theorem. 第四章,給出了Bessel函數的主要性質(zhì),包括加法定理和乘法定理。
- Bessel function design simulation results show the small pass-band ups, stop-band attenuation, in the pass-band with a better group delay characteristics, which can meet the design requirements. 仿真結果表明貝塞爾函數設計的濾波器通帶起伏小,阻帶衰減大,在通帶內群延遲特性較好,可以很好滿(mǎn)足設計要求。
- Utilizing an approximate formula of the first kind zero-order modified Bessel function I 0(x), an approximate closed form of cumulative distribution function(CDF) of a Rice random variable (RRV) is worked out. 應用第一類(lèi)零階修正的貝塞爾函數I0 (x)一個(gè)近似式 ,推導Rice隨機變量的概率分布函數 (CDF)的近似閉式。
- We solve the problem of minimizing nonlinear square integration follow-edby using special computing methods. in which i=-1.J0(x) and J1(x) are order 0 and order 1 Bessel function separately. 我們使用特殊的計算手段求解了以非線(xiàn)性平方積分極小問(wèn)題 J_0(X)和J_1(X)分別為零階和一階貝塞爾函數。
- In chapter 5, the design of oscillator is discussed. First introduced the condition of how to make circuit oscillate and keep stabilization. And compared the advantage and shortcoming of design oscillator with S parameter or Bessel Function method. 第五章主要是討論了射頻前端關(guān)鍵模塊本振源振蕩器的設計,分析了反饋振蕩器的起振、平衡條件,比較了用晶體管S參數和時(shí)域貝塞爾函數法設計振蕩器的優(yōu)缺點(diǎn),最后以科爾皮茲型振蕩器為例用ADS軟件進(jìn)行設計仿真,給出了設計結果。
- This paper analyzed the generation structure of DDFM signal, got the expression in time domain, then applies the modified Bessel function of first kind, then got the analytical expression of frequency spectrum based convolution in frequency domain. 本文分析了DDFM信號的發(fā)生結構,求得其時(shí)域解析式,進(jìn)而引入一階變質(zhì)Bessel函數,最后通過(guò)頻譜卷積的方法求得了DDFM的頻譜解析式。
- This paper describes the method sand principles for computation of resistivity sounding curves in any electrode configurations using a J_1 Bessel function filter and a J Bessel function filter. 本文敘述了用第一類(lèi)0階貝塞爾函數濾波器和1階貝塞爾函數濾波器計算任意電極裝置電測深曲線(xiàn)的方法原理;
- First, we use variation method and Bessel function orthogonality to deduce the dispersion function of the slow-wave structure under the condition of neglecting the thickness of disk. 首先完善了忽略膜片厚度時(shí)同軸交錯膜片加載慢波線(xiàn)的理論分析,采用變分法和貝塞爾函數的正交性導出其色散方程,并對理論結果進(jìn)行了數值計算。
- In the case of horizontal layered-medium model, we can express a discrete resistivity function as a form of convolution filtering, whose filtering coefficient can be calculated by using first order Bessel function. 在水平層狀介質(zhì)模型條件下,離散的電阻率函數可用一種褶積濾波形式表示,此濾波系數利用一階貝塞爾函數求出。
- Some recursion formulae of Bessel functions are derived from such practice problems as well. 并從該實(shí)際問(wèn)題出發(fā),推導出了一類(lèi)貝塞爾函數的遞推公式。
- I apportioned half the property to each of them. 我把財產(chǎn)的一半分配給他們各人。
- Then Fourier transform of circular, cylindrical or spherical array, which are composed of transform bases basedon Bessel function or spherical function respectively, are also studied theoretically and experimentally. 接著(zhù),對分別以貝塞爾函數或球函數為基的圓、圓柱或球陣的傅立葉波束形成進(jìn)行了理論研究和仿真實(shí)驗。
- The static solution is subjected to Eulerian equation,and the vibration solution is given in the form of a series involving Bessel functions. 利用分離變量法,貝塞爾(Bessel)方程的解是一個(gè)由球貝塞爾函數構成的級數形式解,然后將此解和準靜態(tài)解疊加,可得彈性動(dòng)力學(xué)問(wèn)題的解。
- She reckoned she had cut her cost by half. 她估計她減少了一半的費用。
- Making convenience of computation, the calculation method of the spherical Bessel functions for complex arguments is presented. 為便于計算,給出了復宗量的球貝塞爾函數的計算方法。