您要查找的是不是:
- In this paper we study Toeplitz operator and Toeplitz algebra on discrete abelian group. 研究了離散交換群上的Toeplitz算子和Toeplitz代數 .
- Wiener-Hopf Operators on Discrete Abelian Groups 離散交換群上的Wiener-Hopf算子(英)
- The third is the identity of G and Z/(?) , where G is a compact abelian group A=G and Z is the additive group of integers with discrete topology. 最后一個(gè)結果表明G與Z/A可視為同一,而其中的G是一個(gè)緊交換群,=G,Z是帶有離散拓撲的整數加群。
- We prove that if G is also an abelian group, then the group is amenable. 當 G是交換群時(shí) ,給出一種證明其順從的方法
- ThePurpose of this note is to get a characteristic of finite Abelian group. 文章研究了具有某種性質(zhì)的自同構的有限群,得出了這種群為Abelian群的一個(gè)充要條件。
- Some conditions were discussed , under which a group become an abelian group . 討論在什么條件下 ;一個(gè)群可以成為交換群 .;首先討論一般的群;然后討論有限群
- The ellipse rotating symmetric group is proposed,which is an Abelian group. 提出橢圓旋轉對稱(chēng)群,它是一個(gè)單參數阿貝爾群。
- The concept of purifier of subgroup of Abelian group and some conclusions related to it are given in this paper. 本文給出了Abel群之子群的純化子概念及之相關(guān)的幾個(gè)結論。
- In this paper,we prove that -2,-3 are not multipliers of planar difference sets in Abelian group. 本文證明了 :- 2、- 3均不是平面差集 ( Abel群中 )的乘子 ,并指出這一結果可用于討論平面差集的存在性判定
- The present thesis essentially aims at generalizing one theorem about the complete group in the finite group theory up to the infinite abelian group. 本文中心,是將有限群論中關(guān)于完全群的一個(gè)定理推廣到無(wú)限Abel群。
- The critical group of a connected graph is a finite abelian group whose structure is a subtle isomorphism invariant of the graph. 圖的臨界群是圖生成樹(shù)數目的一個(gè)加細.;它是定義在圖上的一個(gè)有限交換群;其群結構是圖的一個(gè)精細不變量;與圖的Laplacian理論密切相關(guān)
- On the multiplier of planar difference sets in Abelian group,it is well known that -1 is not multiplier and 2,3,5,are not extraneous multipliers. 在 Abel群中平面差集乘子的結果中 ;有平面差集的階 n的任何因數均是乘子 ;且 - 1不是乘子 ;從文獻 [1]可以得出 :2、3、5不是額外乘子 .
- In this paper, We have proved finite Abelian group G has 147 types when| A ( G ) | = 25pq, here p, q are different odd primes. 本文利用有限Abel群G的自同構群A(G)的階來(lái)確定群G的構造,證明了當|A(G)|=2~5pq時(shí),G最多有147種類(lèi)型。
- Moreover, a necessary and sufficientcondition for an abelian group to have test elements is specified.Also, the test elements are determined. 作為應用,給出了任意阿貝爾群有檢驗元素的充分必要條件,并確定了其檢驗元素。
- The base that using elliptic curves as public key cryptosystem is because of the point set of elliptic curve on finite field can construct Abelian group. 使用橢圓曲線(xiàn)作為公鑰密碼體制的基礎,是定義在有限域上橢圓曲線(xiàn)上的點(diǎn)構成的阿貝爾群,并且使定義其上的離散對數問(wèn)題的求解非常困難。
- Let G be a finite Abelian group,an ideal in the groupring Z_(p~r)[G] is called an Abelian code over Z_(p~r), where Z_(p~r) is the ring of integers modulo p~r. 設G為有限阿貝爾群; 群環(huán)Zp[G]中的理想稱(chēng)為Zpr 上的阿貝爾碼; 其中Zpr 為模pr 剩余類(lèi)環(huán).
- Extends the binary morphological rank operator to grey-scale images based on fuzzy logic and studies grey-scale morphological rank operators in a finite additive Abelian group. 在有限Abelian群中;基于模糊邏輯將二值形態(tài)學(xué)分級算子推廣到灰度圖像;研究灰度形態(tài)學(xué)分級算子.
- This paper didcussed the basic properties on character of a Abelian group which order is n. We then calculate the determinant of cyclic matrix by means of theorem in this paper. 討論了n階Abel群的特征的基本性質(zhì),并利用所得結果計算了n階循環(huán)矩陣的行列式。
- In some finiteness conditions, we prove that there exists a natural Abelian group homomorphism from the Grothendieck group of R to the Grothendieck group of A. 在適當的有限性條件下,我們證明了一個(gè)從R的Grothendieck群到A的Orothendieck群的自然的阿貝爾群同態(tài)。
- This paper disscusses the types of finite Abelian groups G with |A(G)|=2p~n, 2~2p~n, 2~3p~n. 本文是[1]、[2]的繼續,利用群G的自同構群A(G)來(lái)刻劃群G的構造,給出了|A(G)|=2p~n,2~2p~n,2~3p~n的有限Abel群G的全部類(lèi)型。