您要查找的是不是:
- Garland constructs an integral form U_z in the universal enveloping algebra U(g(A))of affine Lie algebra g(A), and defines, for any field K, U_k=U_z(?) _zK to be the affine hyperalgebra of g(A). Garland對仿射李代數g(A)的普遍包絡(luò )代數U(g(A))構造了一個(gè)Z-形式U_Z,從而對任何域K,定義了g(A)的仿射超代數U_k([2])。
- L_Z associated with finite-dimensional simpleLie algebras and affine Lie algebras of type k =1 over a commutative ring withidentity were defined by J. Hurley in 1969 and 1981 respectively, and theirideal structures were worked out there. Hurley在1969年與1981年分別對有限維復單李代數及k=1的仿射李代數L研究了相應的Chevalley代數L_R=RL_z的理想結構。
- Extended affine Lie algebra 擴張仿射Lie代數
- Also in 1976, Xu determined the Lie algebra aut(Z)(VN,F)) of the holomorphic automorphism group Aut (D(VN,F)) and the generating elements of the affine automorphism group Aff (D(VN, F)). 1976年;許以超還定出了全純自同構群Aut(D(V_N;F))的李代數aut(D(V_N;F))和仿射自同構群Aff(D(V_N;F))的生成元.
- The main work of this paper is to study the RDS-type Lie Algebra. 本論文的主要工作就是對RDS型李代數進(jìn)行研究。
- Affine Lie algebras 仿射李代數
- In terms of solvability of a matrix Lie algebra,new simple delay-independent stability criteria are presented. 從矩陣李代數可解性角度,推導出新的簡(jiǎn)單的時(shí)滯獨立穩定性判據。
- Let D_(l+1)(R) be the orthogonal Lie algebra over a commutative ring R with 2 invertible and m_1 an l+ 1 upper triangular matrix. 設D_(l+1)(R)表示2為單位交換環(huán)R上的2(l+1)階正交李代數。 若記m_1是R上的l+1階三角矩陣,而是D_(l+1)(R)可解子代數。
- It is proved that the Frattini subalgebra of a complete Lie algebra with abelian nilpotent radical is the zero subalgebra. 證明了特征零代數閉域上的具有交換冪零根基的完備Lie代數的Fratini子代數為零。
- Towers([1]) brought up a question :"If L is a Lie algebra all of whose nilpotent subalgebras are abelian , does L split over each of its ideals? 提出一個(gè)問(wèn)題:“如果李代數L的所有冪零子代數都是交換子代數,那么L是否在它的每個(gè)理想上可分?
- Based on a non-solvable matrix Lie algebra L, the derivations and automorphisms of L were studied by the multiplication operation of block matrix. 摘要以一類(lèi)非可解矩陣李代數L為研究對象,利用分塊矩陣的乘法運算,對L的導子及自同構進(jìn)行了研究。
- In this artical,we will expound only the application of group theory,particularly the Liegroup and Lie algebra,and topology to partical physics. 本文僅就純粹數學(xué)中的群論,特別是李群和李代數以及拓撲學(xué)這兩個(gè)分支在粒子物理學(xué)中的應用加以研究,以揭示數學(xué)在現代物理學(xué)中的重要作用。
- This paper proves that any dipolarization in a real or complex semisimple Lie algebra is symmetric. Thus a complete answer to the open problem in reference[2] is gaven. 本文證明半單李代數上的任何雙極化都是對稱(chēng)的,從而解決了金行壯二于1993年提出的一個(gè)待解的問(wèn)題.;并給出了有關(guān)結果的一些應用
- In section 2, we firstly give the relationship between the involutionary automorphism of Lie algebra and standard imbedding Lie algebra of Lie triple system. 其中包括李三系的子系、理想、單李三系、可解、半單、標準嵌入李代數以及李三系的同態(tài)等。
- Abstract: This paper proves that any dipolarization in a real or complex semisimple Lie algebra is symmetric. Thus a complete answer to the open problem in reference[2] is gaven. 文摘:本文證明半單李代數上的任何雙極化都是對稱(chēng)的,從而解決了金行壯二于1993年提出的一個(gè)待解的問(wèn)題.;并給出了有關(guān)結果的一些應用
- Lie Groups, Lie Algebras, and Their Representation by V.S. 最重要的李群、李代數參考書(shū);
- In this paper, the conclusion is that the intersection of lie subring of a Lie group is a Lie subring is obtained, moreover,it gives the Lie algebra of the Lie subring. 文章通過(guò)李子群的性質(zhì)得出了李群的兩個(gè)李子群的交依然是李子群的結論,進(jìn)而得出這一李子群的李代數形式。
- By using decomposition of exponential operators,the normal and antinormal ordering product of Boson exponential operators for SU(1,1) Lie algebra are given. 通過(guò)指數算符的分解,給出了SU(1,1)李代數玻色指數算符的正規和反正規乘積.
- We take the coset space constructed by Lie algebra as the classical phase space for the molecular vibration to study its corresponding dynamical properties. 我們利用李代數的陪集方法,構造分子振動(dòng)體系的經(jīng)典相空間,探討分子高激發(fā)振動(dòng)的動(dòng)力學(xué)特性。
- Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra. 利用系數矩陣和極大項,證明了這類(lèi)李代數是半單李代數且沒(méi)有二維交換子代數。