您要查找的是不是:
- As well as Pythagoras theorem and Fermat's last theorem summarizes the total. 也是對畢達哥拉斯定理和費爾馬最后定理的總概括。
- In fact the theory required is known as Pythagoras' Theorem and involves the use of squares and square roots. 實(shí)際上需要的是畢達哥拉斯的定理,并且使用了平方是平方根。
- Pythagoras is my friend in these days. 畢達哥拉斯是我的朋友在這些日子。
- Let us restate the assertions above as a theorem. 我們把上述的斷言重新表述為一個(gè)定理。
- They also demonstrated knowledge of the Pythagorean theorem well before Pythagoras, as evidenced by this tablet translated by Dennis Ramsey and dating to c. 1900 BC. 他們在畢達哥拉斯之前,也證明了畢達哥拉斯定理。證據就在由丹尼斯拉姆齊破譯的一塊公元前1900年的石版。
- In ancient Greece, young Pythagoras discovers a special number pattern (the Pythagorean theorem) and uses it to solve problems involving right triangles. 圖書(shū)性質(zhì):全價(jià)/非現貨圖書(shū)(想了解什么是非現貨圖書(shū),請點(diǎn)擊這里)
- More recently, Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja in his book Vedic Mathematics claimed ancient Indian Hindu Vedic proofs for the Pythagoras Theorem. 在吠陀數學(xué)一書(shū)中聲稱(chēng)古代印度教吠陀證明了畢達哥拉斯定理。
- The second proof of Theorem 26 is due to James. 定理26的第二個(gè)證明屬于詹姆斯。
- Theorem g is called binomial theorem. 定理g稱(chēng)為二項式定理。
- This completes the proof of the convexity theorem. 這就完成了凸定理的證明。
- This calculation illustrates the theorem. 這個(gè)計算說(shuō)明了這樣一個(gè)定理。
- We call this principle a rule and not a theorem. 我們稱(chēng)這個(gè)法則為原理而不稱(chēng)為定理。
- We have thus arrived at the very important theorem. 這樣我們就得了一條很重要的法則。
- The theorem may be explained as follows. 這條原理可以這樣來(lái)闡述。
- This method helps to obtain a remarkable theorem. 這一方法有助于得出一著(zhù)名的定理。
- His theorem can be translated into simple terms. 他的定理可用更簡(jiǎn)單的術(shù)語(yǔ)來(lái)解釋。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范數意義下是絕對穩定的.
- The main results are theorem 5 anc theorem 9 . 主要結果是定理5和定理9,宅是文[4]的繼續。
- This is the "Kos theorem" Wu edition. 這是 “科斯定理”的張五常版。
- Poynting's Theorem and the Poynting Vector S. 波印廷定理及波印廷向量S。