您要查找的是不是:
- Give the definition of Littlewood Paley operator on spaces of homogeneous type and prove that the image of a BMO function under this operator is either equal to infinity almost everywhere or is in BMO. 給出了齊型空間上 Littlewood- Paley算子 G的定義 ,證明了當 f是 BMO函數時(shí) ,G( f )或者幾乎處處等于無(wú)窮 ; 或者其 BMO范數被 f的 BMO范數控制
- The BMO Boundedness of the Littlewood Paley Operators on Spaces of Homogeneous Type 齊型空間上Littlewood-Paley算子的BMO有界性
- Paley had the cheek to say that he was one of those who had pulled themselves up by their own bootstraps. 佩利厚顏無(wú)恥地說(shuō),他屬于靠自己努力而白手起家的那一類(lèi)人。
- Let us restate the assertions above as a theorem. 我們把上述的斷言重新表述為一個(gè)定理。
- The second proof of Theorem 26 is due to James. 定理26的第二個(gè)證明屬于詹姆斯。
- Theorem g is called binomial theorem. 定理g稱(chēng)為二項式定理。
- This completes the proof of the convexity theorem. 這就完成了凸定理的證明。
- This calculation illustrates the theorem. 這個(gè)計算說(shuō)明了這樣一個(gè)定理。
- We call this principle a rule and not a theorem. 我們稱(chēng)這個(gè)法則為原理而不稱(chēng)為定理。
- Warrington and Paley had been competitors and had run each other hard. 華靈頓和巴雷曾經(jīng)是競爭者,而且是不敵上下的對手。
- We have thus arrived at the very important theorem. 這樣我們就得了一條很重要的法則。
- The theorem may be explained as follows. 這條原理可以這樣來(lái)闡述。
- This method helps to obtain a remarkable theorem. 這一方法有助于得出一著(zhù)名的定理。
- His theorem can be translated into simple terms. 他的定理可用更簡(jiǎn)單的術(shù)語(yǔ)來(lái)解釋。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范數意義下是絕對穩定的.
- The main results are theorem 5 anc theorem 9 . 主要結果是定理5和定理9,宅是文[4]的繼續。
- This is the "Kos theorem" Wu edition. 這是 “科斯定理”的張五常版。
- Littlewood,W.Defining and developing autonomy in East Asian contexts[J]. 肖飛.;學(xué)習自主性及如何培養語(yǔ)言學(xué)習自主性[J]
- Poynting's Theorem and the Poynting Vector S. 波印廷定理及波印廷向量S。
- Two fomes of STOLZ theorem are given and extend. 給出STOLZ定理的兩種形式并把它們進(jìn)行了推廣,討論了它們的應用。